Measurement of Energy

Expenditure, Physical Activity

and Sedentary Behaviors

Hazzaa M. Al-Hazzaa, PhD, FACSM, FECSS
Professor \& Head, Lifestyle \& Health Research, Health Science Research Center,

Princess Nourah University

20 slides are shown

 of 86 slides
Major Outlines

Part I:

* Basic concepts in physical activity science.

Part II:

* Overall descriptions of methods used in measurement of energy expenditure and physical activity in human.
Part III:
* Measurement of energy expenditure by direct and indirect calorimetry as well as by doubly labeled water.

Part IV:

* Assessment of PA \& SB using various methods (PA monitors, HR telemetry, direct observation, questionnaires).

Domains of Physical Activity

\& Leisure-time physical activity (fitness \& sports activities)

* Household/gardening physical activity

Occupational physical activity

Active transport

Physical Activity is Important for Health

Our ability to correlate physical activity or energy expenditure with Health markers depends on valid and reliable measurement

Prevalence of Physical Inactivity among Saudi Adolescents (ATLS Questionnaire)

Proportion of Saudi Adolescents engaging in Vigorous (≥ 6 METs) Physical Activity

Weinods of Assessing Energy Expenditure \& PA

(الاستباتة) (Questionnaire)

سجل رصد الiشياط (البـني(Activity Diaries)
قِّاس الحركة بو(اسبطة عداد المسافة، (Pedometer)
قياس الحركة بواسشظة هفياس (الحركة (Motion Sensor)
رصد ضربات (آلثب (Heart Rate Monitoring)
المر اقْبَة المباشبرة (Direct Observation)
(Doubly labeled Water) استغذام الماء غير المشئ
قياس استهالاك الأكسني! (Oxygen Consumption)

Objective Physical activity Measures- Pitfalls-2

There may be a reactive response to wearing of the instrument (reactivity behaviors) and this effect can disappear with longer wearing periods.

Accelerometers usually average activity counts over epochs that range from 1 to 60 seconds, and choosing too long an epoch misses or underestimates some movements, especially in children, where short bursts of activity are common.

Further, when the participants wearing the pedometer could see the reading count, this may increase the number of steps (11,385 steps/day) compared to those with sealed pedometers (9541 steps/day).

Assessing Physical Activity by Questionnaires

* Low cost.

Easy to administer (more efficient in large sample).

* Can assess context (where, why \& type).

Can assess history.

* Low burden to participant.
* Most practical with large survey involving other Health markers.

Measurement of energy expenditure in human

Calorimetry

Direct
 Calorimetry

Indirect Calorimetry

!
Measurement of Heat production

Measurement of O2 \& CO2 Outputs

Indirect Calorimetry (Fuel type)

Respiratory Quotient = CO2 production/O2 uptake *** Steady state *** otherwise it is called RER

RQ-Carbohydrates	$=1.0$
RQ-Fats	$=0.7$
RQ-Proteins $=0.8$	
RQ-Mixed diet $=0.85$	

Glucose	$\mathrm{CHO}=6 / 6=1$
$6 \mathrm{O}_{2}+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	$6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}+38 \mathrm{ATP}$
Palmitic Acid	Fat $=16 / 23=0.7$
$\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2}+23 \mathrm{O}_{2} \longrightarrow 16 \mathrm{CO}_{2}+16 \mathrm{H}_{2} \mathrm{O}+129$ ATP	

RER $=$ Respiratory Exchange Ratio

Oxygen uptake \& energy expenditure during exercise

Saudi athlete, age $=21$ yrs. Time (min)

Doubly Labeled Water (DLW) Method -2

Advantage

- No requirement for subject compliance.
* The method can be used to validate other techniques.

DLW Drawbacks

* Cost of ${ }^{18} \mathrm{O}$ labeled water is high.
* Requires an expensive isotope ratio mass spectrometer.
* Needs extensive sample preparation system.

Continuous Heart Rate Telemetry for a Saudi Boy

Activity Monitors

أجهزة قياس الحركة

Variety- of Activity Monitors

Photo from Former Pediatric Exercise-Physiology Lab, KSA

Continuous monitoring by accelerometer for an inactive adolescent

Assessing Physical Activity with GPS (2)

Cons

- Data requires smoothing (algorithms to identify behaviors are complex $\&$ not available to everyone).
* Geographic information system (GIS) expertise is required to map locations \& match resources.
. GIS may not match resolution of GPS data.

Assessment of Sedentary Behaviors
 قياس السلوث الخامل
 (مدة الجلوس)

